354 research outputs found

    Wheat Ears Counting in Field Conditions Based on Multi-Feature Optimization and TWSVM

    Get PDF
    The number of wheat ears in the field is very important data for predicting crop growth and estimating crop yield and as such is receiving ever-increasing research attention. To obtain such data, we propose a novel algorithm that uses computer vision to accurately recognize wheat ears in a digital image. First, red-green-blue images acquired by a manned ground vehicle are selected based on light intensity to ensure that this method is robust with respect to light intensity. Next, the selected images are cut to ensure that the target can be identified in the remaining parts. The simple linear iterative clustering method, which is based on superpixel theory, is then used to generate a patch from the selected images. After manually labeling each patch, they are divided into two categories: wheat ears and background. The color feature “Color Coherence Vectors,” the texture feature “Gray Level Co-Occurrence Matrix,” and a special image feature “Edge Histogram Descriptor” are then exacted from these patches to generate a high-dimensional matrix called the “feature matrix.” Because each feature plays a different role in the classification process, a feature-weighting fusion based on kernel principal component analysis is used to redistribute the feature weights. Finally, a twin-support-vector-machine segmentation (TWSVM-Seg) model is trained to understand the differences between the two types of patches through the features, and the TWSVM-Seg model finally achieves the correct classification of each pixel from the testing sample and outputs the results in the form of binary image. This process thus segments the image. Next, we use a statistical function in Matlab to get the exact a precise number of ears. To verify these statistical numerical results, we compare them with field measurements of the wheat plots. The result of applying the proposed algorithm to ground-shooting image data sets correlates strongly (with a precision of 0.79–0.82) with the data obtained by manual counting. An average running time of 0.1 s is required to successfully extract the correct number of ears from the background, which shows that the proposed algorithm is computationally efficient. These results indicate that the proposed method provides accurate phenotypic data on wheat seedlings

    Transcriptional up-regulation of relaxin-3 by Nur77 attenuates β-adrenergic agonist-induced apoptosis in cardiomyocytes.

    Get PDF
    The relaxin family peptides have been shown to exert several beneficial effects on the heart, including anti-apoptosis, anti-fibrosis, and anti-hypertrophy activity. Understanding their regulation might provide new opportunities for therapeutic interventions, but the molecular mechanism(s) coordinating relaxin expression in the heart remain largely obscured. Previous work demonstrated a role for the orphan nuclear receptor Nur77 in regulating cardiomyocyte apoptosis. We therefore investigated Nur77 in the hopes of identifying novel relaxin regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) data indicated that ectopic expression of orphan nuclear receptor Nur77 markedly increased the expression of latexin-3 (RLN3), but not relaxin-1 (RLN1), in neonatal rat ventricular cardiomyocytes (NRVMs). Furthermore, we found that the -adrenergic agonist isoproterenol (ISO) markedly stimulated RLN3 expression, and this stimulation was significantly attenuated in Nur77 knockdown cardiomyocytes and Nur77 knockout hearts. We showed that Nur77 significantly increased RLN3 promoter activity via specific binding to the RLN3 promoter, as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immuno-precipitation (ChIP) assays. Furthermore, we found that Nur77 overexpression potently inhibited ISO-induced cardiomyocyte apoptosis, whereas this protective effect was significantly attenuated in RLN3 knockdown cardiomyocytes, suggesting that Nur77-induced RLN3 expression is an important mediator for the suppression of cardiomyocyte apoptosis. These findings show that Nur77 regulates RLN3 expression, therefore suppressing apoptosis in the heart, and suggest that activation of Nur77 may represent a useful therapeutic strategy for inhibition of cardiac fibrosis and heart failure. © 2018 You et al

    Activation of STING Based on Its Structural Features

    Get PDF
    The cGAS-cGAMP-STING pathway is an important innate immune signaling cascade responsible for the sensing of abnormal cytosolic double-stranded DNA (dsDNA), which is a hallmark of infection or cancers. Recently, tremendous progress has been made in the understanding of the STING activation mechanism from various aspects. In this review, the molecular mechanism of activation of STING protein based on its structural features is briefly discussed. The underlying molecular mechanism of STING activation will enable us to develop novel therapeutics to treat STING-associated diseases and understand how STING has evolved to eliminate infection and maintain immune homeostasis in innate immunity

    PO-034 Effect of Voluntary Exercise on Cartilage Morphology of Knee Osteoarthritis in Obese Mice Induced by High-fat Diet

    Get PDF
    Objective To examine the effect of voluntary wheel-running exercise on cartilage morphology of knee osteoarthritis(KOA) in obese mice induced by high-fat diet,and explore the protective role of 4 weeks voluntary wheel-running exercise on KOA,finally providing effective experimental evidence for clinical treatment of knee osteoarthritis. Methods C57BL/6J mice were randomly assigned to the C-Sed group,C-Ex group,HF-Sed group and HF-Ex group.The control groups were fed a control diet(13.5% kcal from fat),and the high-fat groups were fed a high-fat diet(60% kcal from fat).After feeding 8 weeks different diets,the exercise groups were starting running.In order to examine the effect of voluntary wheel-running exercise on cartilage morphology of KOA,the joint of knee were harvested to be fixed,decalcified and embedded in paraffin,and the four-micrometer-thick sections were stained with both HE and toluidine blue . Results After feeding twelve weeks different diets,the body mass of the high-fat diet group mice has a significant increase,which demonstrates that high-fat diet could successfully induce the mice obese.From the results of HE and toluidine blue,in comparison to the C-Sed group,the surface of the knee articular cartilage in the HF-Sed group was not intact and smooth,and the thickness of articular cartilage has a significant decrease(p<0.001);contrary to the HF-Sed group,the surface of the knee articular cartilage in HF-Ex group was slightly smooth,and there was significant increase in cartilage thickness. Conclusions Four weeks voluntary wheel-running exercise can increase cartilage thickness ,decrease the Mankin’s score and delay the degeneration of knee cartilage in obese mice.To conclude,the short-term wheel-running exercise protects against obesity-induced KOA
    corecore